

File manipulation

1

Compiled by Divya Christopher, Assistant Professor in CSE, LMCST

FILES
Many applications require information be to be read from or written to an auxiliary memory device. Such

information is stored on the memory device in the form of a data file. Thus, data files allow us to store the

information permanently, and to access and alter that information whenever necessary.

In C, an extensive set of library functions is available for creating and processing data files. Unlike other

Programming languages, C does not distinguish between sequential and direct access (random access)

data Files. However, there are two different types of data files, called stream-oriented or standard data

files, and system-oriented or low-level data files. Stream-oriented data files are easier to work with and are

more commonly used. Stream-oriented data files are subdivided into text files and unformatted data files.

Text files that are Sequential files consist of consecutive characters that are interpreted as individual data

items using scanf and printf functions where as unformatted data files, organizes data into blocks which

contains contiguous bytes of information involving complex data structures, like arrays and structures.

OPENING AND CLOSING A DATA FILE

When working with a stream-oriented data file, data is read and modified sequentially. The first step is to

establish a buffer area, where information has to be temporarily stored while being transferred between

the computer‟s memory and the data file. This buffer area allows information to be read from or written to

the data file.

The buffer area is established by writing

FILE *ptvar;

where FILE (uppercase letters required) is a special structure type that establishes the buffer area, and

ptvar is a pointer variable that indicates the beginning of the buffer area. The structure type FILE is

defined within the system include file, stdio.h. The pointer ptvar is often referred to as a stream pointer.

A data file must be opened before it can be created or processed. This associates the file name with the

buffer area (i.e., stream). It also specifies how the data file should be utilized, whether as a read-only file,

a write-only file, or as a read-write file.

The library function fopen is used to open a file which is written as,

ptvar = fopen(file-name, file-type);

where file-name and file- type are strings that represent the name of the data file and file-type denotes the

manner in which the data file will be utilized.

e.g fp=fopen(“data.txt”,”r”); // open the file data.txt in read mode

The fopen function returns a pointer to the beginning of the buffer area associated with the file.

A NULL value is returned if the file cannot be opened as, for example, when an existing data file cannot

be found.

Finally, a data file must be closed at the end of the program. This can be accomplished with the library

function fclose. The syntax is:

fclose (ptvar);
Table 12-1 File-Type Specifications

File-Type Meaning

“r” Open an existing file for reading only.
“w” Open a new file for writing only. If a file with the specified file-name currently exists, it

will be destroyed and a new file created in its place.
“a” Open an existing file for appending (i.e., for adding new information at the end of the file).

A new file will be created if the file with the specified file-name does not exist.
“r+” Open an existing file for both reading and writing.
“w+” Open a new file for both reading and writing. If a file with the specified file-name currently

exists, it will be destroyed and a new file created in its place.
“a+” Open an existing file for both reading and appending. A new file will be created if the file

with the specified file-name does not exist.

File manipulation

2

Compiled by Divya Christopher, Assistant Professor in CSE, LMCST

/* read a line of lowercase text and store in uppercase within a data file */

#include <stdio.h>

#include <ctype.h>

int main()

{

FILE * fpt ; / * define a pointer to predefined structure type FILE */

char c;

/* open a new data file for writing only*/

fpt = fopen("sample.dat", "w");

/* read each character and write its uppercase equivalent to the data file */

do

{

putc(toupper(c = getchar()), fpt) ;

while (c != „\n‟) ;

/ * close the data file */

fclose (fpt) ;

}

After the program has been executed, the data file sample. dat will contain an uppercase equivalent of the

line of text entered into the computer from the keyboard.

For example, if the original line of text had been

We, the people of our country India

After processing, the data file would contain the text

WE, THE PEOPLE OF OUR COUNTRY INDIA

UNFORMATTED DATA FILES (Random access Files)

In Random access files, data is read and modified randomly To read and write blocks of contiguous data

representing a structure or an array, we use the library functions fread() and fwrite().These functions are

often referred to as unformatted read and write functions. Similarly, data files of this type are often

referred to as unformatted data files.

Each of these functions requires four arguments: a pointer to the data block, the size of the data block, the

number of data blocks being transferred, and the stream pointer.

Thus, a typical fwrite function is written as

fwrite(&customer, sizeof(record), 1, fpt) ;

where customer is a structure variable of type record, and fpt is the stream pointer associated with a data

file that has been opened for output.

Stream means reading and writing of data. Streams allow users to access files efficiently. A stream is a

file or physical device like keyboard, printer and monitor.

Figure below shows the input and output streams. The input stream brings data to the program and output

stream collects data from the program. In this way, Input stream extracts data from the file and transfers it

to the program while the output stream stores the data into the file provided by the program.

File manipulation

3

Compiled by Divya Christopher, Assistant Professor in CSE, LMCST

The FILE object uses all these devices. The FILE object contains all the information about stream like

current position, pointer to any buffer, EOF (end of file).

Other file functions are listed below:

Function Operation

fgetc() or getc() Reads a character from current pointer position and advances the pointer to next

character

fprintf() Writes all types of data values to the file

fscanf() Reads all types of data values from the file

fputc() or putc() Writes character one by one to file

gets() Reads string from file

puts() Writes string to file

putw() Writes an integer to the file

getw() Reads an integer from the file

fread() Reads structured data written by fwrite() function

fwrite() Writes block of structured data to the file

fseek() Sets the pointer position anywhere in the file

feof() Detects the End of File

ftell() Returns the current pointer position

rewind() Sets the record pointer at the beginning of the file

Opening File in Append mode E.g.

#include<stdio.h>

#include<process.h>

{ FILE *fp;

char c;

printf(“Contents of file before appending \n”);

fp=fopen(“data.txt”,”r”);

while(!feof(fp))

{

c=fgetc(fp);

printf(“%c”,c);

}

fp=fopen(“data.txt”,”a”);

if(fp==NULL)

{

printf(“File cannot be appended”);

File manipulation

4

Compiled by Divya Christopher, Assistant Professor in CSE, LMCST

exit(1);

}

printf(“Enter string to append”);

while(c!=‟.‟)

{

c=getche();

fputc(c,fp);

}

fclose(fp);

printf(“\n Contents of File after appending”);

fp=fopen(“data.txt”,”r”);

while(!feof(fp))

{

c=fgetc(fp);

printf(“%c”,c);

}

}

Contents of file before appending LMCST.

Enter string to append LOURDES MATHA COLLEGE OF SCIENCE AND TECHNOLOGY

Contents of File after appending LMCST. LOURDES MATHA COLLEGE OF SCIENCE AND

TECHNOLOGY

Create a text file and perform the following: a) write data to the file b) read the data in a given

file and display the file contents on console c) append new data and display on console.
Qn.) Write a C program to enter name and age to text file, use w+ file mode.

#include<stdio.h>

int main() {

FILE *fp;

char text[15];

int age,rollno;

float cgpa;

fp=fopen("Text.txt","w+");

printf("Enter Name and \t Age \n");

scanf("%s %d", text, &age);

fprintf(fp, "%s %d", text, age);

printf("Name \t Age \n");

fscanf(fp, "%s %d", text, &age);

printf("%s\t %d\n", text, age);

fp=fopen("Text.txt","a");

printf("Enter Roll no and CGPA \n");

scanf("%d %f", &rollno, &cgpa);

fprintf(fp, "%d %f", rollno, cgpa);

printf("Name \t Age \t Rollno \t CGPA\t\n ");

fscanf(fp, "%s %d %d %f", text, &age, &rollno , &cgpa);

printf("%s\t %d\t %d \t %f \n", text, age, rollno, cgpa);

fclose(fp);

}

Output

Enter Name and Age

Rini 18

File manipulation

5

Compiled by Divya Christopher, Assistant Professor in CSE, LMCST

Name Age

Rini 18

Enter Roll no and CGPA

33 85

Name Age Rollno CGPA

Rini 18 33 85

READ A LINE OF TEXT FROM A FILE

#include <stdio.h>

#include <stdlib.h> // For exit() function

int main() {

 char c[1000];

 FILE *fptr;

 if ((fptr = fopen("program.txt", "r")) == NULL) {

 printf("Error! opening file");

 exit(1);

 }

 // reads text until newline is encountered

 fscanf(fptr, "%[^\n]", c);

 printf("Data from the file:\n%s", c);

 fclose(fptr);

 return 0;

}

Data from the file:

LOURDES MATHA COLLEGE OF SCIENCE AND TECHNOLOGY

Write a C program to count the no of lines, words, characters, spaces in a text file?

#include <stdio.h>

void main()

{

 int line_cnt = 0, sp_cnt=0,ch_cnt=0,wrd_cnt=1;

 FILE *fp;

 char ch;

 fp = fopen("txt1.txt", "r");

 if(fp==NULL)

 printf("\nError: file not found");

 printf("\nFile Contents are:");

 printf("\n-------------------\n");

 ch = fgetc(fp);

 while (ch != EOF)

 {

printf("%c",ch);

File manipulation

6

Compiled by Divya Christopher, Assistant Professor in CSE, LMCST

 if (ch == '\n')

 line_cnt++;

 if (ch == ' ')

 sp_cnt++;

 if (ch == ' ' || ch == '\t' || ch == '\n' || ch == '\0')

 wrd_cnt++;

 //read next character

 ch = fgetc(fp);

 ch_cnt++;

 }

 printf("\n--\n");

 printf("Total number of lines : %d\n", line_cnt+1);

 printf("Total number of words : %d\n", wrd_cnt);

 printf("Total number of characters : \t%d\n", ch_cnt - sp_cnt);

 printf("--\n");

}

 C programming

 Java programming

 C++

 C#

 VB.NET

 ASP.NET

 Total number of lines : 6

 Total number of words : 8

 Total number of characters : 50

/* C Program to Append the Content of File at the end of Another */

#include <stdio.h>

#include <stdlib.h>

int main()

{

 FILE *fsring1, *fsring2, *fmerge;

 char ch, file1[20], file2[20], file3[20];

 printf("Enter name of first file ");

 gets(file1);

 printf("Enter name of second file ");

 gets(file2);

 printf("Enter name to store merged file ");

 gets(file3);

 fsring1 = fopen(file1, "r");

 fsring2 = fopen(file2, "r");

 fmerge = fopen(file3, "w");

 while ((ch = fgetc(fsring1)) != EOF)

 fputc(ch, fmerge);

 while ((ch = fgetc(fsring2)) != EOF)

 fputc(ch, fmerge);

 printf("Two files merged %s successfully.\n", file3);

 fclose(fsring1);

 fclose(fsring2);

 fclose(fmerge);

 return 0;

File manipulation

7

Compiled by Divya Christopher, Assistant Professor in CSE, LMCST

 }

Output

gcc pgm.c

$./a.out

Enter name of first file a.txt

Enter name of second file b.txt

Enter name to store merged file merge.txt

Two files merged merge.txt successfully.

fwrite() function

The fwrite() function is used to write records (sequence of bytes) to the file. A record may be an array or a

structure. The Syntax of fwrite() function is as shown below:

 fwrite(ptr, int size, int n, FILE *fp);

The fwrite() function takes four arguments.

ptr : ptr is the reference of an array or a structure stored in memory.

size : size is the total number of bytes to be written.

n : n is number of times a record will be written.

FILE* : FILE* is a file where the records will be written in binary mode.

The fread() function is used to read bytes form the file.

Syntax of fread() function

fread(ptr, int size, int n, FILE *fp);

The fread() function takes four arguments.

ptr : ptr is the reference of an array or a structure where data will be stored after reading.

size : size is the total number of bytes to be read from file.

n : n is number of times a record will be read.

FILE* : FILE* is a file where the records will be read.

// C program for writing a block of data involving structures to file

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

struct person

{

 int id;

 char fname[20];

 char lname[20];

};

int main ()

{

 FILE *outfile;

 // open file for writing

 outfile = fopen ("person.dat", "w");

 if (outfile == NULL)

 {

 fprintf(stderr, "\nError opening file\n");

File manipulation

8

Compiled by Divya Christopher, Assistant Professor in CSE, LMCST

 exit(1);

 }

 struct person input1 = {1, "royce", "anto"};

 struct person input2 = {2, "rinil", "jose"};

 //input1 and inut2 are structure variables

 // write struct to file

 fwrite (&input1, sizeof(struct person), 1, outfile);

 fwrite (&input2, sizeof(struct person), 1, outfile);

 if(fwrite != 0)

 printf("contents to file written successfully !\n");

 else

 printf("error writing file !\n");

 // close file

 fclose (outfile);

 }

// C program for reading a block of data involving structure from a file

#include <stdio.h>

#include <stdlib.h>

// struct person with 3 fields

struct person

{

 int id;

 char fname[20];

 char lname[20];

};

int main ()

{

 FILE *infile;

 struct person input;

 // Open person.dat for reading

 infile = fopen ("person.dat", "r");

 if (infile == NULL)

 {

 fprintf(stderr, "\nError opening file\n");

 exit (1);

 }

 // read file contents till end of file

 while(fread(&input, sizeof(struct person), 1, infile))

 printf ("id = %d name = %s %s\n", input.id, input.fname, input.lname);

 // close file

 fclose (infile);

}

gcc demoread.c

./a.out

id = 1 name = royce anto

id = 2 name = rinil jose

File manipulation

9

Compiled by Divya Christopher, Assistant Professor in CSE, LMCST

Write a program to write and read the information about player containing players name, age and runs.

Use fread() and fwrite() functions?

#include<stdio.h>

#include<process.h>

struct record

{

int age;

int runs;

};

void main()

{

FILE *fp;

struct record emp;

fp=fopen(“record.dat”,”w”);

if(fp==NULL)

{

printf(“Cannot open file”);

exit(1);

}

printf(“Enter player name, age and runs scored”);

printf(“==============================”);

scanf(“%s %d %d”,emp.player, &emp.age,&emp.runs);

fwrite(&emp,sizeof(emp),1,fp);

fclose(fp);

if(fp=fopen(“record.dat”,”r”))==NULL)

{

printf(“error in opening file”);

exit(1);

}

printf(\n Record entered is\n”);

fread(&emp,sizeof(emp),1,fp);

printf(“%s %d %d”,emp.player, emp.age, emp.runs);

fclose(fp);

}

OUTPUT

Enter player name, age and runs scored

=============================

Arun 25 10000

Record entered is

Arun 25 10000

fseek() function
It is a file function used to position file pointer on the stream. Three arguments are passed through this

function:

 File pointer

 Negative or Positive number used to re-position file pointer towards backward or forward

direction.

 The current position of the file pointer

File manipulation

10

Compiled by Divya Christopher, Assistant Professor in CSE, LMCST

Integer Value Constant Location in the file

0 SEEK_SET Beginning of the file

1 SEEK_CUR Current position of the file pointer

2 SEEK_END End of the file

Example –

fseek(fp,10,0); // Reads file through forward direction from beginning of the file

fseek(fp,10,SEEK_CUR); // Reads file through forward direction from current position of file pointer

fseek(fp,-n, SEEK_END); // Reads file through backward direction from end of file

ftellp() function

It is a file function which returns the current position of the file pointer. It returns the pointer from the

beginning of the file.

// C Program to demonstrate the use of fseek()

#include <stdio.h>

int main()

{

 FILE *fp;

 fp = fopen("test.txt", "r");

 // Moves file pointer to end of the file

 fseek(fp, 0, SEEK_END);

 // Printing current position of file pointer

 printf("%ld", ftell(fp));

 }

Output:

81

The file test.txt contains the following text:

"Someone over there is calling you. We are going for work. Take care of yourself."

#include <stdio.h>

int main () {

 FILE *fp;

 fp = fopen("file.txt","w+");

 fputs("This is Cpp Program", fp);

 fseek(fp, 7, SEEK_SET);

 fputs(" C Programming Language", fp);

 fclose(fp);

 return(0);

}

Output:

This is C Programming Language

File manipulation

11

Compiled by Divya Christopher, Assistant Professor in CSE, LMCST

feof() function

The function feof() is used for detecting the file pointer whether it is at the end of file or not. It returns

non-zero if the file pointer is at the end of file, otherwise it returns zero.

Syntax -

int feof(FILE *stream)

#include <stdio.h>

int main () {

 FILE *fp;

 int c;

 fp = fopen("file.txt","r");

 if(fp == NULL) {

 perror("Error in opening file");

 return(-1); }

 while(1) {

 c = fgetc(fp);

 if(feof(fp)) {

 break ;

 }

 printf("%c", c);

 }

 fclose(fp);

}

Output

LMCST

C feof function returns true in case end of file is reached, otherwise it returns false.

#include<stdio.h>

int main()

{

FILE *f1 = NULL;

char buf[50];

f1 = fopen("infor.txt","r");

if(f1)

 {

 while(!feof(f1))

 {

 fgets(buf, sizeof(buf), f1);

 puts(buf);

 }

 fclose(f1);

 }

}

Output

Lourdes Matha College of Science and Technology

File manipulation

12

Compiled by Divya Christopher, Assistant Professor in CSE, LMCST

ferror() function

ferror() is a function used to find out error that has occurred when file read or write operation is carried

out.

#include <stdio.h>

int main () {

 FILE *fp;

 char c;

 fp = fopen("file.txt", "w");

 c = fgetc(fp);

 if(ferror(fp)) {

 printf("Error in reading from file : file.txt\n");

 }

 fclose(fp);

}

rewind() function

This function resets the file pointer to the beginning of the file stream. It also clears the error and end-of-

file indicators for stream.

The syntax for the rewind function is:

void rewind(FILE *stream);

stream - The stream whose file position indicator is to be set to the beginning of the file.

#include<stdio.h>

#include<conio.h>

void main(){

FILE *fp;

char c;

clrscr();

fp=fopen("file.txt","r");

while((c=fgetc(fp))!=EOF){

printf("%c",c);

}

rewind(fp);//moves the file pointer at beginning of the file

while((c=fgetc(fp))!=EOF){

printf("%c",c);

}

fclose(fp);

getch();

}

Output:

this is a simple text this is a simple text

File manipulation

13

Compiled by Divya Christopher, Assistant Professor in CSE, LMCST

 C PROGRAM TO copy the contents of one file to another

#include <stdio.h>

#include <stdlib.h> // For exit()

int main()

{

 FILE *fptr1, *fptr2;

 char filename[100], c;

 printf("Enter the filename to open for reading \n");

 scanf("%s", filename);

 // Open one file for reading

 fptr1 = fopen(filename, "r");

 if (fptr1 == NULL)

 {

 printf("Cannot open file %s \n", filename);

 exit(0);

 }

 printf("Enter the filename to open for writing \n");

 scanf("%s", filename);

 // Open another file for writing

 fptr2 = fopen(filename, "w");

 if (fptr2 == NULL)

 {

 printf("Cannot open file %s \n", filename);

 exit(0);

 }

 // Read contents from file

 c = fgetc(fptr1);

 while (c != EOF)

 {

 fputc(c, fptr2);

 printf(“%c”,c);

 c = fgetc(fptr1);

 }

 printf("\nContents copied to %s", filename);

 fclose(fptr1);

 fclose(fptr2);

 return 0;

}

Output:

Enter the filename to open for reading

a.txt

Enter the filename to open for writing

b.txt

HELLO WORLD

Contents copied to b.txt

